Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us.
نویسندگان
چکیده
We evaluate the substantial amount of information accumulated on bacterial diversity in a variety of environments and address several fundamental questions, focusing on aquatic systems but including other environments to provide a broader context. Bacterial diversity data were extracted from 225 16S rDNA libraries described in published reports, representing a variety of aquatic and non-aquatic environments. Libraries were predominantly composed of rare phylotypes that appeared only once or twice in the library, and the number of phylotypes observed was correlated with library size (implying that few libraries are exhaustive samples of diversity in the source community). Coverage, the estimated proportion of phylotypes in the environment represented in the library, ranged widely but on average was remarkably high and not correlated with library size. Phylotype richness was calculated by methods based on the frequency of occurrence of different phylotypes in 194 libraries that provided appropriate data. For 90% of aquatic-system libraries, and for 79% of non-aquatic libraries, the estimated phylotype richness was <200 phylotypes. Nearly all of the larger estimates were in aquatic sediments, digestive systems and soils. However, the approaches used to estimate phylotype richness may yield underestimates when libraries are too small. A procedure is described to provide an objective means of determining when a library is large enough to provide a stable and unbiased estimate of phylotype richness. A total of 56 libraries, including 44 from aquatic systems, were considered 'large enough' to yield stable estimates suitable for comparing richness among environments. Few significant differences in phylotype richness were observed among aquatic environments. For one of two richness estimators, the average phylotype richness was significantly lower in hyperthermal environments than in sediment and bacterioplankton, but no other significant differences among aquatic environments were observed. In general, and with demonstrated exceptions, published studies have captured a large fraction of bacterial diversity in aquatic systems. In most cases, the estimated bacterial diversity is lower than we would have expected, although many estimates should be considered minimum values. We suggest that on local scales, aquatic bacterial diversity is much less than any predictions of their global diversity, and remains a tractable subject for study. The global-scale diversity of aquatic Bacteria, on the other hand, may be beyond present capabilities for effective study.
منابع مشابه
Molecular survey of aeroplane bacterial contamination.
AIMS To examine bacterial contamination of passenger aircraft and to identify aeroplane environments posing the greatest potential health risk. METHODS AND RESULTS DNA was extracted from ten environmental samples collected on four different flights (three domestic, one international) from a variety of surfaces frequently touched by passengers. PCR clone libraries were made from the DNA sample...
متن کاملBacterial diversity in the intestine of sea cucumber Stichopus japonicus
The intestinal bacterial diversity of Stichopus japonicus was investigated using 16S ribosomal RNA gene (rDNA) clone library and Polymerase Chain Reaction/Denaturing Gradient Gel Electrophoresis (PCR-DGGE). The clone library yielded a total of 188 clones, and these were sequenced and classified into 106 operational taxonomic units (OTUs) with sequence similarity ranging from 88 to 100%. The cov...
متن کاملMethanotrophic populations in estuarine sediment from Newport Bay, California.
Methanotrophic populations have been studied in Newport Bay estuary, Southern California. Environmental clone banks were generated for 16S rRNA genes specific to methanotrophs and for a diagnostic functional gene, pmoA, encoding a conserved subunit of the particulate methane monooxygenase. These clone banks contained sequences specific to types I and II methanotrophs typically found in aquatic ...
متن کاملمطالعه تنوع ژنتیک باکتریهای سینوریزوبیوم با استفاده از تکنیک PCR / RFLP 16S-23S rDNA
It is important to investigate the genetic diversity and evaluate symbiotic effectiveness of the indigenous rhizobial population. It helps understand the responses of indigenous isolates to different rhizobial inoculants. In spite of the importance of bacterial diversity, there are a few scientific reports about it in Iranian soils. Genetic diversity of 150 isolates of Sinorhizobium isolated ...
متن کاملMolecular monitoring of succession of bacterial communities in human neonates.
The establishment of bacterial communities in two healthy babies was examined for more than the first 10 months of life by monitoring 16S ribosomal DNA (rDNA) diversity in fecal samples by PCR and denaturing gradient gel electrophoresis (DGGE) and by analyzing the sequences of the major ribotypes. DGGE profiles of the dominant populations in the intestines of the infants were obtained by analyz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FEMS microbiology ecology
دوره 47 2 شماره
صفحات -
تاریخ انتشار 2004